

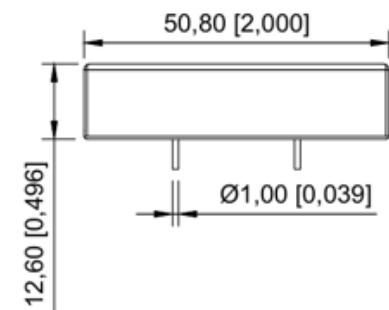
Features

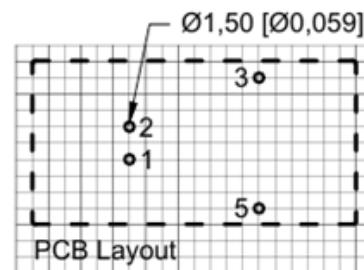
- Wide Input 2:1
- DIP Package/Din-Rail Series
- Working Temperature: -40°C~+85°C
- Isolation 1500VDC 0.5mA 1Minute
- Internal SMD Design
- Metal shell, highly flame-retardant plastic shell
- Cooling Nature
- Good shielding and anti-interference performance, electromagnetic compatibility, lightning protection, output overcurrent, short circuit protection, overheating protection, self recovery and other functions

Product Picture

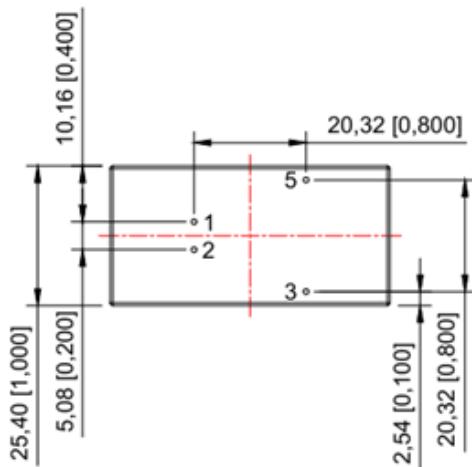
EMC-EN55032

EN55035


LVD-EN62368


Dimensions

Dimensions of WRD_S_-10WH2 Series


Front View

Top View

Note: The grid distance is 2.54*2.54mm

Pin Mode	
Pin	Single(S)
1	Vin
2	GND
3	0V
5	+XXVDC

Bottom View

Note:

Unit: mm[inch]

Pin Section Tolerance: $\pm 0.1 [\pm 0.004]$

General Tolerance: $\pm 0.25 [\pm 0.01]$

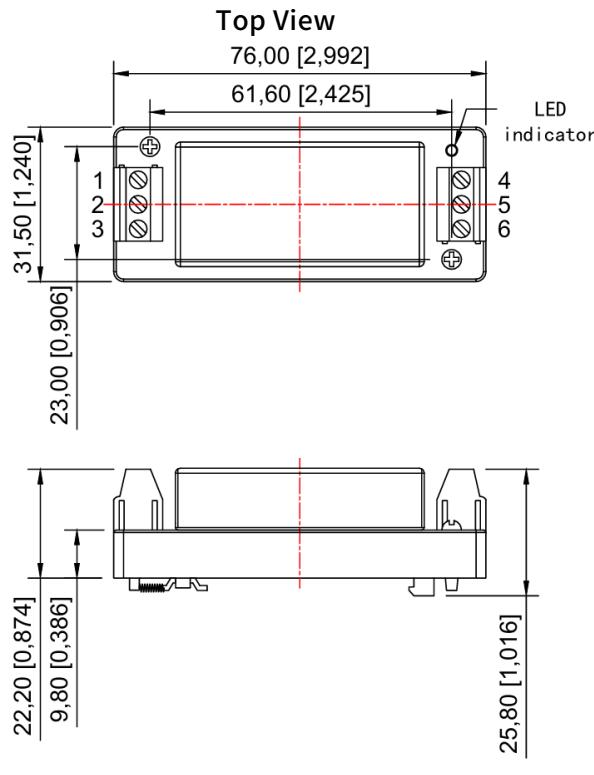
The device layout is for reference only.

Dimensions of WRD_D_-10WH2 Series

Note: The grid distance is 2.54*2.54mm

Pin Mode	
Pin	Dual(D)
1	Vin
2	GND
3	-XXVDC
4	COM
5	+XXVDC

Note:


Unit: mm[inch]

Pin Section Tolerance: $\pm 0.1 [\pm 0.004]$

General Tolerance: $\pm 0.25 [\pm 0.01]$

The device layout is for reference only.

WRD_S(D)_ZDK-10WH2 Series

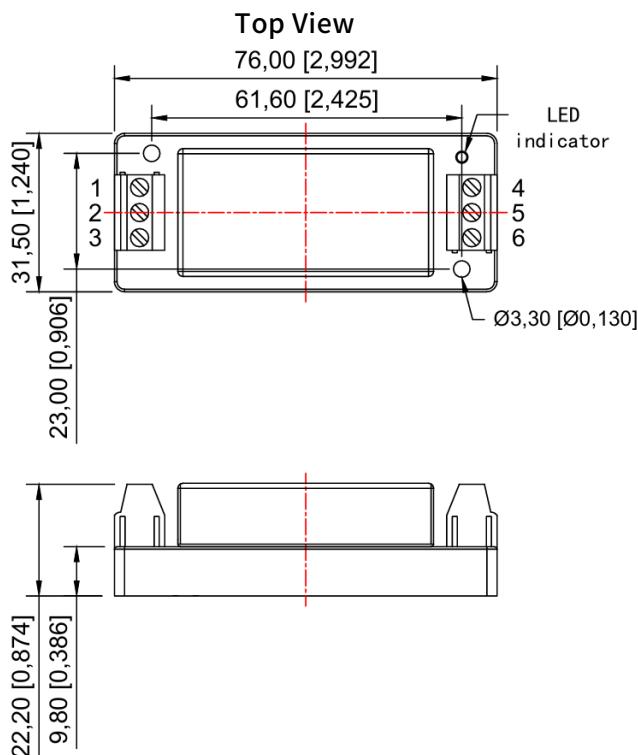
Front View

Pin Mode		
Pin	Single	Dual
1	NC	NC
2	GND	GND
3	Vin	Vin
4	0V	-XXVDC
5	NC	COM
6	+XXVDC	+XXVDC

Note:

Unit: mm[inch]

General Tolerance: $\pm 0.25[\pm 0.01]$


Wire strength: 24-12 AWG

Tightening torque: Max 0.4 N·m

Guide type: TS35

The device layout is for reference only.

WRD_S(D)_ZD-10WH2 Series

Front View

Pin Mode		
Pin	Single(S)	Dual(D)
1	NC	NC
2	GND	GND
3	Vin	Vin
4	0V	-XXVDC
5	NC	COM
6	+XXVDC	+XXVDC

Note:

Unit: mm[inch]

General Tolerance: $\pm 0.25[\pm 0.01]$

Wire strength: 24-12 AWG

Tightening torque: Max 0.4 N·m

The device layout is for reference only.

Applications

Railway communications, display screens, monitoring equipment, petrochemicals, industrial control, long-distance DC power supply systems, switching systems and other communication equipment, etc.

Selection Guide

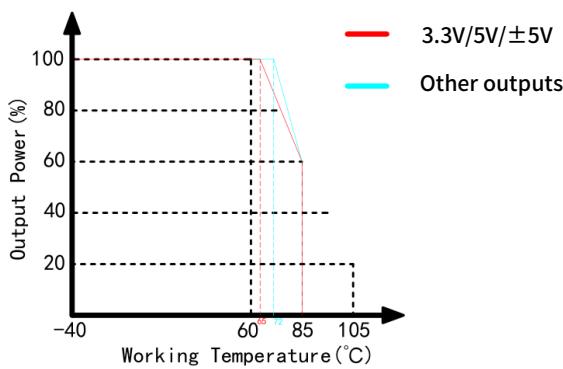
Model	Vin (VDC)	Vout (Vo±2%)	Current (mA)	Efficiency (%)	Isolation (VDC)
WRD_S3.3-10WH2	5(4.5-9)	3.3	3030	≥75	1500
WRD_S05-10WH2		5	2000	≥78	1500
WRD_S12-10WH2		12	833	≥82	1500
WRD_S15-10WH2		15	667	≥82	1500
WRD_D05-10WH2		±5	±1000	≥78	1500
WRD_D12-10WH2		±12	±417	≥82	1500
WRD_D15-10WH2		±15	±334	≥82	1500
WRD_S3.3ZD(K)-10WH2		3.3	3030	≥75	1500
WRD_S05ZD(K)-10WH2		5	2000	≥78	1500
WRD_S12ZD(K)-10WH2		12	833	≥82	1500
WRD_S15ZD(K)-10WH2		15	667	≥82	1500
WRD_D05ZD(K)-10WH2		±5	±1000	≥78	1500
WRD_D12ZD(K)-10WH2		±12	±417	≥82	1500
WRD_D15ZD(K)-10WH2		±15	±334	≥82	1500
WRD_S3.3-10WH2	12(9-18) 24(18-36) 48(36-75) 110(70-150)	3.3	3030	≥75	1500
WRD_S05-10WH2		5	2000	≥78	1500
WRD_S12-10WH2		12	833	≥82	1500
WRD_S15-10WH2		15	667	≥82	1500
WRD_S24-10WH2		24	417	≥82	1500
WRD_D05-10WH2		±5	±1000	≥78	1500
WRD_D12-10WH2		±12	±417	≥82	1500
WRD_D15-10WH2		±15	±334	≥82	1500
WRD_S3.3ZD(K)-10WH2		3.3	3030	≥75	1500
WRD_S05ZD(K)-10WH2		5	2000	≥78	1500
WRD_S12ZD(K)-10WH2		12	833	≥82	1500
WRD_S15ZD(K)-10WH2		15	667	≥82	1500
WRD_S24ZD(K)-10WH2		24	417	≥82	1500
WRD_D05ZD(K)-10WH2		±5	±1000	≥78	1500
WRD_D12ZD(K)-10WH2		±12	±417	≥82	1500
WRD_D15ZD(K)-10WH2		±15	±334	≥82	1500

Note: Our company customizes module power supplies with any input or output for customers. If you have other output voltage requirements, please contact our company. Unless otherwise specified, the input =Vi. The characteristics of the module power supply should comply with the provisions of Table 1 and be applicable to the full temperature range (-40°C ≤Tc≤85°C).

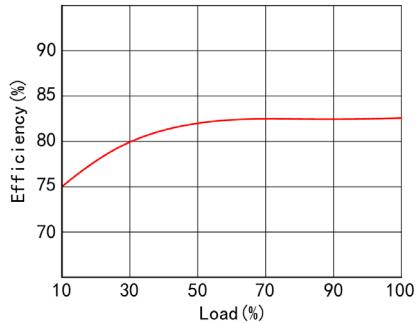
Mechanical Specifications

Size	50.80 x 25.40 x 12.60 mm, ZD(K): 76.00 x 31.50 mm
------	---

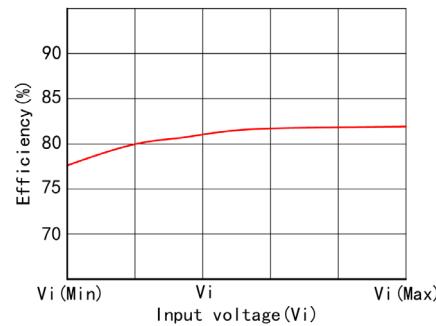
Electrical Characteristics


Characteristics	Symbol	Condition Vi , $-40^{\circ}\text{C} \leq T_c \leq 85^{\circ}\text{C}$ (Unless Otherwise Specified)	Min	Max	Unit
Output Voltage	V_o	Full Load	$V_o-2\%$	$V_o+2\%$	V
Output Current	$I_{o\text{max}}$	—	—	$P(\text{Power})/U(\text{Output Voltage})$	A
Output Ripple Voltage	V_{p-p}	Full Load, Vi , $BW=20\text{MHz}$, Normal Temperature	—	240	mV
Output Noise Voltage	V_{p-p}	Full Load, Vi , $BW=20\text{MHz}$, Normal Temperature	—	480	mV
Voltage Regulation	S_v	$V_{\text{imin}}, Vi, V_{\text{imax}}$, Full Load	—	± 2	%
Load Regulation	S_i	$Vi, Io=(10\% \sim 100\%), 3.3V/5V, \pm 5V$	—	± 3	%
		$Vi, Io=(10\% \sim 100\%), \text{Other outputs}$		± 2	
Efficiency	η	Vi , Full Load, Normal Temperature	75	—	%
Insulation Resistance	R_i	Input/Output, Test Voltage: 500VDC	1000	—	MΩ

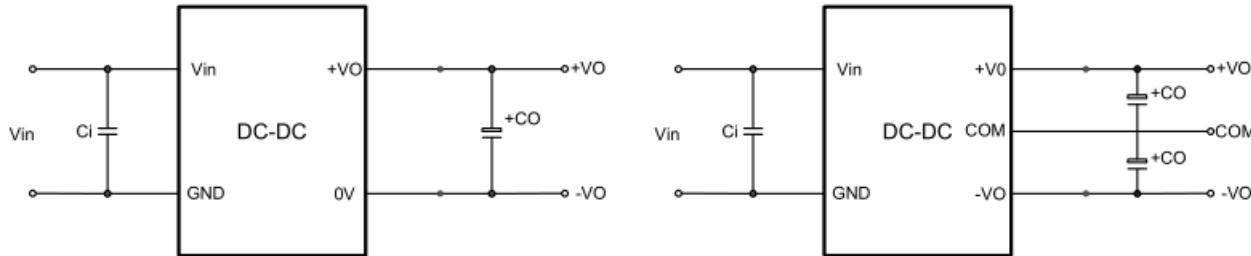
General Characteristics


EMC Specifications	Magnetic Field Sensitivity Test	GB6833.2-87
	Electrostatic Discharge Sensitivity Test	GB6833.3-87
	Radiation Sensitivity Test	GB6833.5-87
	Conductivity Sensitivity Test	GB6833.6-87
Temperature Excursion	$\leq 0.02\%/\text{C}$	
Storage Temperature	$-40^{\circ}\text{C} \sim 125^{\circ}\text{C}$	
Switching Frequency	200KHz- 400KHz	
Humidity	10%-90%RH	
MTBF	$> 300000\text{H}$	

Product Characteristic Curves


Temperature chart

Efficiency/Load graph



Efficiency/Input voltage graph

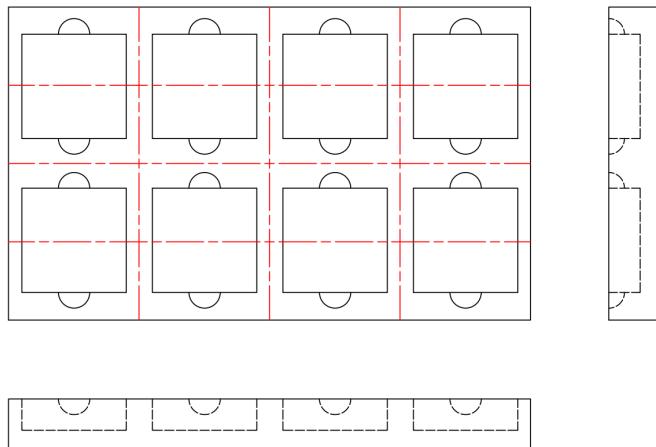
Typical Application

Design Reference

Recommendation Test

Filtering: In some circuits sensitive to noise and ripple, filtering capacitors can be externally connected to the input and output terminals of the DC/DC converter to reduce the impact of ripple on the system. However, the value of the filtering capacitor should be appropriate. If the capacitor is too large, it may cause startup problems. For each output, under the condition of ensuring safe and reliable operation, the maximum capacitance value of the filtering capacitor can refer to the external capacitance table. In order to obtain very low ripple, an "LC" filtering network can be connected to the input and output terminals of the DC/DC converter, so that the filtering effect will be better. At the same time, attention should be paid to the size of the

inductance value and the frequency of the "LC" filtering network itself, which should be staggered with the frequency of the DC/DC module power supply to avoid mutual interference. For each output channel, it is advisable to verify the condition of its external capacitor while ensuring safe and reliable operation. For further details, please refer to Table 1.


Vin (VDC)	Vout (VDC)	Ci (μ F)	Co (μ F)
5 (4.5~9)	3.3/5	100 μ F/50V	47 μ F/16V
	12/15		22 μ F/25V
	\pm 5/ \pm 12		47 μ F/16V
	\pm 15		22 μ F/50V
	3.3/5		47 μ F/16V
12 (9~18) 24 (18~36)	12/15	100 μ F/50V	22 μ F/25V
	24		22 μ F/50V
	\pm 5/ \pm 12		47 μ F/16V
	\pm 15		22 μ F/50V
	3.3/5		47 μ F/16V
48 (36~75)	12/15	47~100 μ F/100V	22 μ F/25V
	24		22 μ F/50V
	\pm 5/ \pm 12		47 μ F/16V
	\pm 15		22 μ F/50V
	3.3/5		47 μ F/16V
110 (70~150)	12/15	22~47 μ F/200V	22 μ F/25V
	24		22 μ F/50V
	\pm 5/ \pm 12		47 μ F/16V
	\pm 15		22 μ F/50V
	3.3/5		47 μ F/16V

The recommended values for the external filter capacitors are specified in Table 1.

Notice

Package

This series of modules are packed with shockproof and static-proof foam.

Transport

The package is allowed to be transported by any means of transport, which shall avoid direct rain or snow and mechanical damage.

Storage

The module should be stored in a warehouse with an ambient temperature of -40 °C to 125 °C, a relative humidity of 20% to 95%, and no acidic, alkaline, or other harmful gases in the surrounding environment.

Note: The above are the performance indicators of the product series listed in this manual. Some indicators of non-standard models may exceed the above requirements. If there is any inconsistency between the manual and the product specification document, please refer to the specification document. If you have special requirements, please contact our company directly.